LB/O99: 48 weeks of AB-729 + nucleos(t)ide analogue (NA) therapy results in profound, sustained HBsAg declines in both HBeAg+ and HBeAg- subjects which are maintained in HBeAg- subjects who have discontinued all therapy

Man-Fung Yuen¹, Jacinta Holmes², Simone I Strasser³, Apinya Leerapun⁴, Wattana Sukeepaisarnjaroen⁵, Pisit Tangkijvanich⁶, Varun Sharma⁷, Elina Medvedeva⁷, Emily P Thi⁸, Gastón Picchio⁷, Timothy Eley⁷, Karen D Sims⁷

¹The University of Hong Kong, Hong Kong, ²St. Vincent's Hospital, Melbourne, ³Royal Prince Alfred Hospital, Sydney, Australia, ⁴Chiang Mai University, Chiang Mai, ⁵Khon Kaen University, Khon Kaen, ⁶Chulalongkorn University, Bangkok, Thailand, ⁷Clinical Development, Arbutus Biopharma, Warminster, United States ⁸Research/Discovery, Arbutus Biopharma, Warminster, United States

Disclosures - Man-Fung Yuen, D.Sc., M.D., Ph.D.

Consultant for AbbVie, Aligos Therapeutics, AiCuris, Antios Therapeutics, Arbutus Biopharma, Arrowhead Pharmaceuticals, Assembly Biosciences, Clear B Therapeutics, Dicerna Pharmaceuticals, Finch Therapeutics, Fujirebio Incorporation, GlaxoSmithKline, Gilead Sciences, Immunocore, Janssen, Roche, Sysmex Corporation, Tune Therapeutics, Vir Biotechnology and Visirna Therapeutics

Background

- There is an unmet medical need for new finite HBV therapies that have the potential to provide a functional cure for CHB
- AB-729 is a subcutaneously administered N-Acetylgalactosamine(GalNAc)-conjugated, single trigger, pan-genotypic siRNA therapeutic that blocks all HBV RNA transcripts, including HBx, resulting in suppression of viral replication and all viral antigens
- In the AB-729-001 Phase 1a/1b study in HBV DNA positive and negative CHB subjects, AB-729 administered every 4, 8, or 12 weeks resulted in robust mean HBsAg declines of -1.8 log₁₀ to -2.6 log₁₀ from baseline across all cohorts at end of treatment
- Here we report following:
 - Further follow-up data for subjects who completed 48 weeks of AB-729 treatment and remained on NA therapy for the 48 week follow-up period
 - Additional follow-up for subjects with HBsAg <100 IU/mL who stopped NA therapy at least 24 weeks post-last dose of AB-729

Study Design – AB-729-001

- \bigcirc Cohorts E, F, I, and J enrolled HBV DNA- subjects on stable NA therapy.
- Cohort G enrolled HBV DNA+ subjects who began treatment with TDF concurrently with AB-729 on Study Day 1
- Cohort K enrolled HBV DNA-, \bigcirc HBeAg+ subjects only
- Part 3 subjects who completed 48 \bigcirc weeks of AB-729 treatment and met protocol-defined NA stopping criteria (assessed at least 24 weeks after the last dose of AB-729) were permitted to stop NA therapy
 - ALT <2 × ULN.
 - Undetectable (target not detected, TND) HBV DNA,
 - HBeAg negative, and
 - HBsAg <100 IU/mL at two consecutive visits

- HBV DNA was assessed with Abbott Realtime HBV viral load assay, LLOQ < 10 IU/mL
- HBsAg was assessed with Roche Elecsys HBsAg II Quant II, LLOQ < 0.07 IU/mL
- HBeAg was assessed with Abbott Architect HBeAg Quant, LLOQ < 0.11 IU/mL
- HBsAb was assessed with Siemens Advia Centaur aHBs2, LLOQ < 5.0 mIU/mL
- ALT upper limit of normal (ULN) = 48 U/L for males, 43 U/L for females

IOPHARMA

Demographics and Baseline Characteristics

Baseline Measure	Cohort E* 60 mg Q4W (N=7)	Cohort F 60 mg Q8W (N=7)	Cohort I 90 mg Q8W (N=6)^	Cohort J 90 mg Q12W (N=7)	Cohort K/HBeAg+ 90 mg Q8W (N=7)	Cohort G/HBV DNA+ 90 mg Q8W (N=7)
Age in years, mean (range)	45.1 (33 – 63)	44.0 (31 – 59)	45.7 (38 – 54)	44.3 (35 – 61)	41.4 (21 – 57)	43.9 (34 – 50)
Male gender, n (%)	4 (57%)	4 (57%)	4 (67%)	5 (71%)	4 (57%)	3 (43%)
Race, n (%)						
Asian	1 (14%)	5 (71%)	5 (83%)	4 (57%)	6 (86%)	6 (86%)
Black White Pacific Islander	0 6 (86%) 0	1 (14%) 1 (14%) 0	0 1 (17%) 0	0 3 (43%) 0	0 0 1 (14%)	0 1 (14%) 0
ALT (U/L), mean (SD)	22.4 (10.52)	23.4 (15.22)	26.0 (10.20)	20.1 (7.22)	25.1 (8.9)	32.7 (15.81)
NA therapy at entry, n (%) ETV TDF/TAF	1 (14%) 6 (86%)	2 (29%) 5 (71%)	3 (50%) 3 (50%)	1 (14%) 6 (86%)	2 (29%) 5 (71%)	N/A (TDF started on Day 1)
HBeAg negative, n (%)	7 (100%)	6 (71%)	5 (83%)	4 (57%)	19.64 IU/mL [‡] (range 0.3 – 98.2)	7 (100%)
HBsAg (IU/mL), mean (range)	5,372 (584 – 11,761)	5,354 (667 – 18,605)	4,691 (338 – 19,017)	6,911 (309 – 25,345)	2,221 (545 – 5,273)	1,818 (277 – 4,723)

ALT: alanine aminotransferase; *Subjects in Cohort E switched to AB-729 60 mg Q12W after Week 20 dose; ^N = 6, 2 subjects with protocol violations on Day 1 were excluded from the analysis; [‡]Data shown are baseline mean (range) HBeAg levels (LLOQ < 0.11 IU/mL).

Baseline characteristics were similar across Cohorts, with slightly more males than females and mostly Asian subjects represented; most subjects were HBeAg-negative outside of Cohort K; mean baseline HBsAg levels were slightly lower in Cohorts K and G

Comparable mean HBsAg declines were observed in all Cohorts

Mean HBsAg log₁₀ IU/mL change from baseline at key timepoints

Visit	Cohort E	Cohort F	Cohort I	Cohort J	Cohort K	Cohort G
Mean (SE)	(N=7)	(N=7)	(N=6)	(N=7)	(N=7)	(N=7)
Baseline	3.51	3.53	3.36	3.37	3.23	3.14
	(0.20)	(0.17)	(0.23)	(0.28)	(0.14)	(0.14)
Treatment	-1.10	-1.02	-1.30	-1.06	-1.63	-1.56
Week 12	(0.15)	(0.11)	(0.19)	(0.31)	(0.39)	(0.32)
Treatment	-1.84	-1.57	-1.79	-1.56	-1.99	-1.82
Week 24	(0.16)	(0.09)	(0.22)	(0.25)	(0.35)	(0.29)
Treatment	-1.89	-1.90	-1.91	-1.80	-2.57	-2.05
Week 48	(0.18)	(0.14)	(0.32)	(0.41)	(0.61)	(0.31)
Follow Up	-1.74	-1.59	-1.42	-1.52	-2.38	-1.50
Week 12	(0.20)	(0.23)	(0.26)	(0.40)	(0.75)	(0.13)
Follow Up	-1.43	-1.26	-1.37	-1.49	-1.82	-1.53
Week 24	(0.18)	(0.21)	(0.39)	(0.35)	(0.63)	(0.29)
Follow Up	-1.55	-1.01	-0.88	-1.04	-1.86	-1.10
Week 48	(0.56)	(0.24)	(0.33)	(0.20)	(0.70)	(0.27)

Data shown are for a minimum of 5 subjects/timepoint. Last dose of AB-729: Cohort E, Week 44; Cohorts F, I, G, K: Week 40; Cohort J: Week 36.

- Ill Cohorts achieved at least a -1.8 log₁₀ decline in mean HBsAg at the end of the treatment period (Week 48)
- Mean HBsAg levels remained below baseline values at Follow Up Week 48
- There were no significant differences in mean HBsAg declines between the 60 mg and 90 mg doses or between different dosing intervals
- AB-729 was well-tolerated at all dose levels and intervals, with no treatment discontinuations due to AEs or treatment-related Grade 3 or 4 AEs

AB-729 reduced both HBsAg and HBeAg in Cohort K (HBeAg+) subjects

HBsAg log₁₀ change from baseline

HBeAg log₁₀ change from baseline

- 1 subject achieved HBsAg <LLOQ (<0.07 IU/mL) with detectable anti-HBs and HBeAg <LLOQ (<0.11 IU/mL)
- 2 other subjects achieved either HBsAg or HBeAg <LLOQ during the study</p>
- Mean log10 decline in HBeAg was ~1.0 log₁₀ at last follow up visit, despite low HBeAg at baseline in some subjects

HBV DNA and HBsAg reductions persist in subjects who discontinued NA therapy

Baseline characteristics of NA discontinuation subjects

Baseline Measure	Pre-Study HBV DNA- (NA Suppressed)				Pre-Study HBV DNA+				
	Subj 46	Subj 51	Subj 52	Subj 53	Subj 61	Subj 56	Subj 58	Subj 59	Subj 60
Age (years)	35	49	36	61	56	52	50	36	46
Gender	F	М	М	F	F	F	М	М	F
Race	Asian	Black	Asian	Asian	Asian	Asian	Asian	Asian	Asian
Study Cohort	Е	F	F	F	I.	G	G	G	G
NA therapy at study entry	ETV	ETV	TDF	TDF	ETV	none	none	none	none
Total duration of NA therapy	9 y, 7 m	6 y, 2 m	17 y	7 y, 5 m	6 y, 5 m	1 y, 6 m*	1 y, 6 m*	1 y, 6 m*	1 y, 6 m*
Baseline HBsAg (IU/mL)	1392	6765	1888	2368	2021	277	1397	1338	1128

* All Cohort G subjects started TDF on Study Day 1; y = year, m= month

Protocol-defined NA Restart criteria:

- Persistent ALT elevations ≥2 × baseline, AND ≥2 − 5 × ULN, AND HBV DNA >2000 IU/mL for 12 weeks
- Persistent ALT elevations $\ge 2 \times$ baseline, AND $\ge 5 10 \times$ ULN, AND HBV DNA > 2000 IU/mL for 4 weeks
- HBV DNA >20,000 IU/mL regardless of ALT level, confirmed by repeat
- ALT >10 x ULN confirmed by repeat
- ALT >baseline and >ULN, AND:

- increased direct or total bilirubin ≥2 × ULN and ≥2 × baseline confirmed by repeat, OR
- INR increase of ≥0.5 from baseline, confirmed by repeat

- 7 of 9 (78%) subjects remain off NA therapy
 - These 7 subjects have been off NA therapy for 44-64 weeks and completed AB-729 treatment over 1½ years ago
 - HBV DNA in these subjects remains low
 - HBsAg remains between -0.8 and -1.6 \log_{10} IU/mL below baseline values
 - No ALT flares have occurred
- Two of 9 subjects restarted NA therapy
 - As previously reported, Subject 53 restarted NA therapy at Investigator's request after the NA d/c FU Week 20 visit (HBV DNA = 4,670 IU/mL)
 - Subject 58 had confirmed HBV DNA > 20,000 IU/mL and NA therapy was restarted at NA d/c FU Week 32
 - No ALT flares or other safety signals were observed in either subject

HBV DNA suppression after NA cessation suggests immune control

- NA discontinuation post-AB-729 treatment appears well tolerated with no ALT flares
- Most subjects have maintained low HBV DNA levels off treatment, despite occasional blips
- HBsAg remains well below baseline levels in all subjects

Time = weeks post-NA discontinuation; Time 0 is at least 24 weeks after last AB-729 dose HBsAg LLOQ = 0.07 IU/mL, <LLOQ defined as 0.035 IU/mL HBV DNA LLOQ = 10 IU/mL, <LLOQ defined as 5 IU/mL and TND defined as 1 IU/mL ALT ULN = 48 U/L (males) or 43 U/L (females) Dashed lines represent HBsAg levels of 100 IU/mL and 10 IU/mL

Conclusions

- AB-729 treatment produced robust and comparable declines in HBsAg regardless of dose, dosing interval, baseline HBeAg+ or HBV DNA+ status
- HBsAg declines in most subjects persist for at least a year after the last dose of AB-729
- AB-729 was well-tolerated through 48 weeks of treatment, regardless of dose or dosing interval
- Obscontinuation of all therapy in AB-729-treated subjects who achieved HBsAg <100 IU/mL is well tolerated and has led to continued low levels of HBV DNA and HBsAg in most subjects</p>
 - No ALT flares have been observed
 - These results suggest ongoing host immune control in the absence of therapy
 - Subjects will be followed for up to 3 years to monitor for functional cure
- AB-729 is in Phase 2 clinical development in combination with other agents, including pegylated interferon alfa-2a (NCT04980482) and VTP-300, an HBV antigen-specific immunotherapeutic (ACTRN12622000317796).

Acknowledgements

Arbutus Biopharma thanks all participating subjects and their families, the Investigators and site staff, Novotech CRO, LabCorp, Pharstat, Maksym Chernyakhovskyy for data management assistance, and the AB-729 Research and Development Teams.

Participating Sites:

New Zealand:

• Edward Gane, University of Auckland

Australia:

- Jacinta Holmes, St. Vincent's Hospital, Melbourne
- Simone Strasser, Royal Prince Alfred Hospital, Sydney

Hong Kong:

• Man-Fung Yuen, Queen Mary Hospital

Moldova:

• Elina Berliba, Arensia Exploratory Research, Chisinau

Thailand:

- Pisit Tangkijvanich, King Chulalongkorn Memorial Hospital, Bangkok
- Apinya Leerapun, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai
- Wattana Sukeepaisarnjaroen, Srinagarind Hospital, Khon Kaen

South Korea:

- Yoon Jun Kim, Seoul National University Hospital, Seoul
- Young-Suk Lim, Asan Medical Center, Seoul